
 1

The Projectile inside the Loop 
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The loop-the-loop demonstration1 is one of the favorite toys used in introductory 

physics courses. In this simple device a small sphere typically rolls down an incline and 
then continues around a circular track, which constitutes the “loop.” By using the 
principle of conservation of mechanical energy, students are usually asked to find the 
initial conditions that enable the moving body to “safely” make it around the loop.2 At 
times, I tried to ask my students an unusual question: “What happens to the body if it 
doesn’t go around the loop and falls inside it?” In this paper I will detail the answer to 
this question and describe a simple experimental activity related to this interesting 
problem. 

 
The student answers are usually contradictory. Some suggest that the object would 

simply fall straight down, after loosing contact with the rail of the loop. Others suppose 
that the body would continue to follow a somewhat circular trajectory in the air, with a 
different radius of curvature, compared to the loop radius. In general, many students fail 
to recognize that the object, once the contact with the rail is lost, simply follows the 
kinematical rules of a projectile motion. 

 
The Description of the Problem 

 
Consider the loop-the-loop apparatus, schematically described in Figure 1, composed 

of an initial “ramp” and a circular track of radius R. In the actual demonstration a 
spherical object (represented by the red dot in the figure) of mass m, radius r and moment 
of inertia 2

5
2 mrI = , starts moving from rest at a certain initial height, and then rolls down 

the ramp and inside the loop. We can assume a pure rolling motion without slipping, and 
neglect air resistance or any other energy loss in the motion.3 The red dot in the figure 
should actually represent the position of the center of mass of the rolling sphere, for 
which all the following analysis will apply. Alternatively, we can assume the radius r of 
the sphere being much smaller than the track radius R, so that a point-like object, as in 
Fig. 1, can represent the body. 

 
It is a well-known result that the minimum initial height required for the ball to make 

the loop is exactly R10
27 , as measured from the bottom level of the loop. If the ball is 

released from an initial height hi less than 2.7 R, it will not gain enough speed to 
complete the loop. At this point two options are still open: if the release height is in the 
range Rhi ≤≤0 , the ball will simply rise to the same height inside the loop, and then 
keep oscillating back and forth, without ever losing contact with the track. The second 
option is the most interesting and related to our original problem. If the initial height is in 
the range RhR i 7.2<<  (indicated by the green bar on the y axis in Fig. 1), the ball will 
reach a position (denoted by point P and related angle θ, in Fig. 1) in the upper left 
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quadrant of the loop, at which it will loose contact with the rail, while still possessing a 
non-zero speed, Pv . 

 
The contact with the track is lost at the point where the normal force N, of the track 

on the ball becomes zero, i.e., when the radial component of the weight alone will 
provide the centripetal force, R

vPmmg
2

sin =θ , so that: 
,sin2 θgRvP =          (1) 

at position P in the figure. Imposing standard conservation of mechanical energy, 
between initial position at height hi and final position at height )sin1( θ+= Rh f , with 
linear and angular velocities denoted by Pv  and rvPP /=ω  respectively, we can write: 
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PPfi Imvmghmgh ω++= .       (2) 
If we express the initial height as aRhi = , where a is a number in the range 

7.20.1 << a , for the case of interest, we can recast Eq. 2 into a simple relation between 
a and θ: 

 
θθ sin1)( 10

17+=a ,         (3) 
 
having used Eq. 1, and the expressions given above for fh and Pω . From Eq. 3 we 

can check again our limiting cases: 1)0( ==θa , i.e., when the ball is released from 
Rhi = , will simply rise to the same final height ( Rh f = , for 0=θ ); in the other 

extreme case 7.2)90( == oθa , when the ball is released from Rhi 7.2=  will “lose 
contact” at the top of the loop ( o90=θ ), but will still go around the loop. 

 
The Projectile Motion 

 
According to the analysis given above, if we release the ball from aRhi = , with 

,7.20.1 << a the moving object will lose contact with the loop track and become a 
“projectile,” at an angular position, obtained from Eq. 3, 

 
[ ])1(sin 17

101 −= − aθ .        (4) 
 
The ball will leave the track, with an “initial” velocity, as a projectile, which follows 

from Eq. 1: 
 
 ,)1(sin 17

10 gRagRvP −== θ        (5) 
 
with the direction of this velocity vector described by the angle α formed with the 
horizontal,  

θα −= o90 .         (6) 
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For example, in Fig.1 we illustrate the case of the ball loosing contact at an angle 
o30=θ , which requires 85.120

37 ==a , or an initial release level Rhi 85.1= . The ball 

becomes a projectile, “launched” with a speed gRvP 2
1= , at angle o60=α with the 

horizontal. In the same figure we also sketch the parabolic trajectory followed by the ball 
while falling inside the loop.4 

 
An interesting position along the trajectory of this motion is represented by point H in 

Fig.1. This is the point at which the projectile is at the same level of the original launch 
position P. The horizontal distance PH  can be evaluated, by using the well-known (but 
often misused by students) formula for the horizontal range of a projectile.5 Consider now 
the simple geometrical construction6 in Fig. 1, where the line PA is tangent to the circle at 
P, point P’ is at the same level of point P, segment P’A is drawn perpendicular to the 
tangent line and the vertical red line from A is intercepting the red horizontal line at H. 
Using Eqs. 5 and 6 (from which θα cossin = , θα sincos = ) we obtain: 
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The previous equation, which applies for any possible value of the angle α  (not just 

the case shown in figure), shows that point H can be found in general using the 
geometrical construction described above. In other words, to find H we simply draw the 
tangent to the circle at point P, then construct the perpendicular P’A from P’ to the 
tangent line, where P’ is a point on the circle at the same height of P. Point H will be the 
vertical projection of point A on the segment PP’, as illustrated in Fig. 1 and 
mathematically proven in Eq. 7. 
 

A Modified Loop-the-Loop Experiment 
 
The discussion presented above suggests a different use of the loop-the-loop 

apparatus (see Fig. 2), in which we follow and analyze the projectile trajectory. To test 
the theory we filmed the motion of the projectile-inside-the-loop with a digital video 
camera and video capture software (VideoPoint 2.5), and then used video editing 
software to produce a “stroboscopic” picture of the motion. Video clips and photos of the 
experiment can be viewed on a related web page.7  

 
Fig. 2 reproduces precisely the effect outlined in Fig. 1. The ball is launched from an 

initial release level ,85.1 Rhi = corresponding to an angle o30=θ or ,60o=α at which 
the ball is losing contact with the track. In this figure we obviously consider the motion 
of the center-of -mass of the sphere, so that the trajectory of the body is given at first by 
the black circle of radius R, somewhat smaller than the radius of the actual track. Apart 
from this difference the two figures represent essentially the same situation. 
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The ball then loses contact approximately at point P (for o30=θ ) and proceeds along 
the parabolic path in figure. The center-of-mass positions are indicated by the red dots in 
the same figure. Using equation (7) the horizontal distance PH is computed as 

.'cos' 4
3

4
12 RPPPPPH === α  This can actually be seen in Fig. 2, where the path of the 

falling ball, given by the red dots, appears to be going through point H, which is the 
intersection between the horizontal segment PP’ and the vertical line from point A. In this 
particular case ( o30=θ ) the ball will also hit the track approximately at the central 
bottom point, as predicted above. 

 
The use of the software allows for a better determination of the parabolic trajectory 

and all the related physical quantities. In particular, another interesting position is the top 
point of the parabolic trajectory. This corresponds to a height RahTOP '= , where 'a  is a 
number between 1 and 2. In general iTOP hh <  (i.e., aa <' ) because the sphere keeps 
rotating after losing contact with the track, with the same angular velocity it possessed at 
point P, therefore it cannot regain the same amount of potential energy it had at the 
beginning. Either by using conservation of mechanical energy, or by studying the 
parabolic trajectory, the relation between a and 'a  is 

.coscos' 5
13

2
1 αα −−= aa         (8) 

For the case of Fig. 2, with the initial release level at ,85.1 Rhi =  it is easy to calculate a 
value of RRhTOP 69.116

27 ≅= , using the previous equation. Inspection of Fig. 2, done with 
the video software, shows complete agreement (the estimated position from the figure 
gives RhTOP 7.1= ).  

 
We have repeated this experiment for different angles, such as oo 60,45=θ  and 

others, obtaining similar results.8 The general analysis for the projectile-inside-the-loop 
and the geometrical considerations presented above are valid in any case and can be 
easily tested. 
 

Conclusion 
 
The loop-the-loop apparatus can be used also to study the kinematics of the projectile 

motion in a rather unusual way. This projectile-inside-the-loop experiment can be 
effectively integrated into classroom demonstrations or become part of laboratory 
activities. It can be used to show interesting connections between topics such as rolling 
motion, conservation of mechanical energy and projectile motion. 
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Fig. 1. Schematic description of the projectile inside the loop apparatus. For any initial 
position of the rolling sphere within the green vertical range, the moving body will lose 
contact with the circular track at position P and then will fall according to the parabolic 
trajectory, drawn in red. The geometrical construction used to determine point H is also 
shown for the particular case o30=θ . 
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Fig. 2. Results of our demonstration for o30=θ . Video editing software was used to 
produce a “stroboscopic” picture of the motion. The position of the center-of-mass of the 
falling ball is indicated by the red dots. The geometrical construction is similar to the one 
in Fig. 1. 
 


