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Generalizing 
Mechanics

 

One-dimensional Newtonian mechanics for a 
point-particle of constant mass m is based upon 
Newton's second law of motion,             As our first 
example of FC applied to mechanics, we generalize 
the previous equation by using derivatives of arbitrary 
(real) order q, and by considering a constant force per 
unit mass, f=F/m=const:              
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The general solution of the (extraordinary) differential 
equation above is: 

where we also used the fractional derivative of a 
constant quantity f, which is not zero in FC.
 The l constants of integration, c1, c2, ... , cl, can be 
determined from the l initial conditions: x(t0), x′(t0),..., 
x(l-1)(t0). For example, choosing for simplicity's sake 
t0=1, x(1)=x′(1)=x′′(1)=...=1, and also f=1, our general 
solution above can be easily plotted for different values 
of the order q, as shown in Figure 1 in the panel above.
 This figure illustrates the resulting position vs. time 
functions, with the order q ranging from 1 to 3 with 
fractional increments. The standard Newtonian solution 
is obviously recovered for q=2 (red-solid curve), for a 
motion with constant acceleration. Two other solutions 
for integer values of q are presented: the case for q=1 
(blue-solid line) represents a simple motion with 
constant velocity; the q=3 case (green-solid line) 
represents instead a motion with constant jerk. In 
Fig.1, we also show (dashed and dotted curves) the 
position vs. time functions for some fractional values of 
the order q. These additional curves interpolate well 
between the integer-order functions described above. 

A brief review of FC

Lorem ipsum

Generalized Riesz 
Gravitational Potential

A possible generalization of Newton’s law of universal 
gravitation can be obtained by considering a generalized 
Riesz potential: 
where 
is the distance between the infinitesimal source mass 
element                      and the position    being considered. 
 Due to the fractional order q, a "length scale" a is 
needed for dimensional correctness. For a spherical 
source of radius R0 and uniform density                      , the 
Riesz potential can be evaluated analytically for any q:

      Gravitational Force and FC

An interesting consequence of these generalized 
gravitational potentials is the analysis of the resulting orbital 
circular velocities, for the inner and outer solutions. From the 
Riesz potentials, we can easily obtain the circular velocities, 

which are plotted in Figure 3, for the same values of the 
fractional order q used in Fig. 2. We also set G=M=R0=a=1 
as done previously. The q=1 case (red-solid curve) 
represents the standard Newtonian situation.

Orbital Circular Velocities
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Conclusions
In this work, we have applied Fractional Calculus to some basic problems in 
standard Newtonian mechanics. The main goal was to show that FC can be used 
as a pedagogical tool, even in introductory physics courses, to gain more insight 
into basic concepts of physics, such as Newton's laws of motion and gravitation.

This work was supported by a grant from the Seaver College of Science and 
Engineering, LMU, Los Angeles. For more details, see the pre-print: 
Gabriele U. Varieschi, arXiv:1712.03473 [physics.class-ph].

 In Figure 2, we illustrate the shape of these 
generalized gravitational potentials, for different values of 
the fractional order q ranging from zero to two. The q=1 
case (red-solid curve) represents the standard Newtonian 
gravitational potential. All these plots were obtained by 
setting G = M = R0 = a = 1 for simplicity's sake, thus the 
vertical grid line at r=1.0 denotes the boundary between 
the inner (0≤r≤R0) and the outer (r>R0) potentials.
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 It is interesting to note that, for values of q decreasing 
from one toward zero, the rotational velocity curves in the 
outer (r≥R0) region show a definite "flattening" effect, which 
becomes more pronounced for the lowest q values (for 
example, in the q=0.25 case, blue-dotted curve). This 
consideration might be of some interest in relation with the 
well-established problem of dark matter in galaxies, as 
evidenced by the galactic rotation curves and their lack of 
Newtonian behavior in the outer regions.
 Also, given possible connections between fractional 
calculus and fractal geometry, the self-similar patterns shown 
by mathematical fractals might also be present in the 
astrophysical structures of the Universe, such as galaxies or 
others. The fractal dimension of these structures can be 
directly connected to the fractional order of the related 
gravitational equations.

Unlike standard calculus, there is no unique definition 
of derivation and integration in FC. Historically, 
several different definitions were introduced and 
used.
 All proposed definitions reduce to standard 
derivatives and integrals for integer orders n, but they 
might not be fully equivalent for non-integer orders of 
differ-integration. For example, Riemann proposed to 
extend the simple recursive relation                   
by using gamma functions:                    , where q is a 
real (or complex) number. In this way, for any function 
f(x) expanded in series of power functions,                ,
one can easily define a “fractional derivative” of 
arbitrary order q:                          . We note that, using 
this definition of fractional derivative, the derivative of 
a constant C is not zero in FC:                        .
 More general definitions of fractional derivatives 
and integrals to any arbitrary order q exist in the 
literature, such as the Grünwald formula:

which involves only evaluations of the function itself 
and can be used for both positive (derivation) and 
negative values of q (integration). Another general 
definition is the Riemann-Liouville fractional integral, 
for negative q: 
which can also be extended to fractional derivatives.

 Introduction
Fractional Calculus (FC) is a natural generalization of 
calculus that studies the possibility of computing 
derivatives and integrals of any real (or complex) order, 
i.e., not just of standard integer orders, such as 
first-derivative, second-derivative, etc.
    The history of FC started in 1695 when l'Hôpital raised 
the question as to the meaning of taking a fractional 
derivative such as d1/2y/dx1/2 and Leibniz replied: "...This 
is an apparent paradox from which, one day, useful 
consequences will be drawn." 
    Since then, eminent mathematicians such as Fourier, 
Abel, Liouville, Riemann, Weyl, Riesz, and many others 
contributed to the field, but until lately FC has played a 
negligible role in physics. 
 However, in recent years, applications of FC to 
physics have become more common in fields ranging 
from classical and quantum mechanics, nuclear physics, 
hadron spectroscopy, and up to quantum field theory.


